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Abstract 

Adversarial patch attacks challenge the robustness of deep learning models, particularly in 

applications like facial recognition. This research introduces a universal patch attack 

framework using simulated annealing to optimise patch design and placement. The method 

adapts patches to 3D facial contours with differentiable rendering and thin plate spline 

transformations, ensuring realistic integration. Differentiable rendering captures realistic 

lighting and viewing conditions, improving transferability. With our approach, we generate a 

universal patch – universal both in location and texture. We extend the concept of adversarial 

attacks to support multiple patches, allowing flexible attack strategies, and are trained against 

state-of-the-art models for enhanced robustness. As adversarial attacks against systems like 

these become increasingly advanced, we investigated how some common defence methods, 

such as exploiting higher patch frequencies and data augmentation, would impact the results 

of the adversarial attacks. We then explored potential methods to then counter these particular 

defence methods.  

1. Introduction

Deep Neural Networks have been widely utilised in various domains, including computer 

vision applications like facial recognition (FR), object classification etc. One shortfall is that 

these are susceptible to adversarial attacks, and in real-world scenarios, often subjected to “cat-

and-mouse” games where security systems are continuously updated to counter new attack 

strategies, while attackers develop increasingly sophisticated methods to bypass defences. 

Thus, to forestall such attacks, it is important to explore novel attack methods. 

Adversarial attacks can be categorized into digital and physical attacks. Digital attacks perturb 

input images subtly in ways imperceptible to humans but capable of deceiving models. Physical 

attacks, such as creating adversarial patches, manipulate physical objects to achieve similar 

outcomes in real-world settings. The latter is particularly relevant to FR systems, which 

typically process physical inputs, and is the focus of this research. 

Existing adversarial attacks have several shortcomings. First, whether physical or digital 

attacks, the optimisation process is conducted in a digital environment. Consequently, many 

current attacks fail to translate effectively into real-world environments, where factors, like 

lighting or texture, can significantly degrade the adversarial attack’s performance. Thus, these 

factors must be taken into account to make the attack more robust. Existing attack methods are 

also often limited in both scope and practicality. Many are designed for highly specific 

applications, such as adversarial glasses [1] or makeup [2], restricting their versatility and 

applicability to broader contexts. Lastly, there are limitations to the universality of the 

adversarial patches. The patch must be universal in both texture and location. Currently, it is 

difficult to ascertain a universal location, as each individual’s facial proportions are unique. 

During optimisation, patches are often placed in a particular (x, y) coordinate relative to an 

image of a certain size, or a relative location (e.g., “top”, “centre”) [3], assuming that it 



 

 

corresponds to the same facial feature [4]. While such location specifics may not matter as 

much for object detection [5], this has several issues in FR – first, the variability in facial 

structure across individuals means that a fixed (x, y) coordinate might correspond to entirely 

different facial features for different people in the images, or the patch may not even lie within 

the face of the individual. Secondly, it cannot be used in real life, because it is unclear what 

that coordinates correspond to.  

 

In light of these limitations, in this research we propose a universal single-and-multi adversarial 

patch framework for robust attacks on FR systems that can be implemented in real life by 

printing out the patch and placing it on the attacker’s face. 

 

2. Methodology 
 

 
Fig. 2.1 Pipeline of adversarial attack framework. Best viewed zoomed in.  

2.1 Dataset 
We downloaded a face dataset, CelebA1, a large dataset of more than 200, 000 images to train 

our adversarial patch. For data pre-processing, we cropped the photos based on boundary boxes 

enclosing the facial keypoints detected by MediaPipe2, and removed photos which could not 

be detected, possibly because it is an extreme side profile, or contained sunglasses, detected 

using a glasses detector3. Due to time constraints as a large amount of time is required to 

optimise the patch, we used ~10, 000 images for training and ~3000 for testing.   
 

2.2 Heatmap Generation and Simulated Annealing 

To determine the most effective position for an adversarial patch, we explored two methods – 

using occlusion sensitivity to generate a heatmap and simulated annealing.   
 

2.2.1 Heatmap generation 

By covering parts of the target face image and finding the difference between the outputs of 

the model with the original and the masked image, we found which area, if occluded, would 

cause the greatest change in feature vector – in other words, which region is the most crucial 

to the model identifying a person as the target person. The mask was a 5 by 5 pixels black 

patch, shifted by a margin of 2 pixels each time. The difference was calculated using Mean 

Squared Error (MSE) loss between the feature vector of the original image, as detected by the 

ResNet50 model, and the masked image.  

 
1 https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html  
2 https://github.com/google-ai-edge/mediapipe  
3 https://github.com/mantasu/glasses-detector  

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/google-ai-edge/mediapipe
https://github.com/mantasu/glasses-detector


 

 

 

Our target person was chosen to be Taylor Swift. The heatmap 

indicates that the nose region, when masked, greatly changes the 

feature vector as output of the model – the nose has high occlusion 

sensitivity. The regions of warmer color suggest that the 

corresponding region, if masked, results in greater change in feature 

vector. This suggests that placing an adversarial patch on the nose 

could be effective, as it likely contains features central to the model’s 

identification process.   
Fig. 2.3.1.1 Heatmap of 

Target Person’s face 

2.2.2 Simulated annealing 

 
Fig. 2.3.2.1 Simulated Annealing Pipeline: the red arrows represent the first iteration, and the blue subsequent 

iterations until the final iteration, where the best vector is yielded. Best viewed zoomed in.  

Similar to [6], we employed simulated annealing to find the optimal location, but applied it to 

facial images, introducing several crucial distinctions. Simulated annealing is computationally 

efficient compared to an exhaustive search. It is a better option because it reduces 

computational costs by strategically narrowing down the search space instead of exhaustively 

evaluating every possible location, doing so while balancing exploitation (focusing on 

promising regions) and exploration (testing worse areas to avoid local minima).  

We began by detecting facial keypoints using MediaPipe, generating random vectors for patch 

placement relative to the nose. These coordinates were constrained to lie within the face mesh 

framing the face, and iterated across the simulated annealing dataset of ~5000 images.  The 

patch position is then a relative position such that it is not bound by constraints of different 

facial proportions. For each candidate location, masked regions were generated for single-

patch, and multi-patch cases. Losses included: (1) MSE loss between the masked and target 

images, and (2) MSE loss between the masked and original images. This ensures the patch's 



 

 

effectiveness arises from its adversarial properties, not simple feature obstruction. The rationale 

is that the black patch can serve as a proxy for estimating actual patch location.  

Simulated annealing takes into account a temperature variable. At a higher temperature, it is 

more likely to accept a wrong or worse solution, meaning that the loss is higher than the 

previous, to prevent being stuck at a local minimum. It starts out from a high temperature, 

which gradually decreases. This method adjusts the probability of accepting less optimal 

solutions over time, gradually focusing on regions most likely to yield the global minimum.  

The candidate vector, determined by a step size (dependent on temperature), is accepted based 

on a probabilistic criterion or as the new “best” vector if it reduces loss. As temperature 

decreases, the search converges to an optimal patch location, yielding the final relative position.  

2.3 3D Differentiable Rendering and Thin Plate Spline (TPS) Transformation 
When the printed patch is placed on an attacker’s face, the patch would fold, bend or curve 

based on the contours of the attacker’s face. Hence, to create a patch that works in real life, we 

have to consider this 3D aspect of placing the patch to ensure robustness in different physical 

environments.  
 

2.3.1 3D Differentiable Rendering 

4 
Fig. 2.4.1.1 3D Face Reconstruction Pipeline. Best viewed zoomed in. 

 

To simulate placing the patch on an actual 3D face, a 3D face mesh of each individual in our 

dataset was generated using the MediaPipe face mesh function, where the predefined face mesh 

vertices4, which serve as a standardized 3D representation of the face, was used alongside the 

detected facial landmarks of each individual. Using PyTorch3D5, the patch was applied as a 

texture mapped to the face mesh, and rendered using its differentiable rendering function. The 

function allowed for the patch to be applied in a manner that accounted for 3D transformations, 

such as rotation, scaling, and depth perspective. Lighting settings were 

 
Fig. 2.4.1.2 Random 

patch without 3D 

differentiable 

rendering 

 
Fig. 2.4.1.3 Random 

patch with 3D 

differentiable 

rendering  

randomised during the optimisation process to simulate 

varying lighting conditions. Once the patch was 

rendered on the 3D face mesh with these realistic 

effects, it was extracted from the rendered image using 

a pixel intensity threshold, isolating the patch from the 

rest of the face mesh. The extracted patch, with its 3D 

effects and shading, was then overlaid onto the original 

2D image at the corresponding location. 

 

 2.3.2 TPS Transformation6 

 
4 https://github.com/google/mediapipe/blob/master/mediapipe/python/solutions/face_mesh_connections.py   

5 https://github.com/facebookresearch/pytorch3d  

6
 https://gist.github.com/catalys1/3eef0b6ee5749b5d8851755a7ee0e6e1  

https://github.com/google/mediapipe/blob/master/mediapipe/python/solutions/face_mesh_connections.py
https://github.com/facebookresearch/pytorch3d
https://gist.github.com/catalys1/3eef0b6ee5749b5d8851755a7ee0e6e1


 

 

In TPS, the patch is like a thin metal plate constrained at 

certain points, causing it to bend. TPS warps the patch 

based on fixed points by minimising the bending energy. 

We warped the patch based on points on the attacker’s 

face, detected using MediaPipe. This is similar to how in 

a real-world scenario, the patch would bend based on the 

attacker’s face and have a shape similar to that of the 

nose, when placed on the nose.  

Fig. 2.4.2.1 Patch 

with TPS 

transformation  

 
Fig. 2.4.2.2 

Points used for 

TPS  

  [7] 

2.4 Optimisation 

For optimisation, we used Sophia7 [8], a second order optimiser that performs better than other 

optimisers like Adam. It uses curvature approximation for adaptive gradient updates. 
 

2.4.1 Loss Calculation 

For the calculation of the loss, we included various losses to make our patch more robust: 

1. MSE Loss between the outputs for the perturbed image and the 

target image: This causes the patch to optimise such that the difference 

between feature vectors of the patched face and of the target image’s 

face would decrease, ensuring the patch is effective in causing the 

attacker to be misclassified as the target individual.  

 

2. EOT (Expectation Over Transformation) Loss: EOT Loss [9] is the loss after making some 

changes to the perturbed image, such as rotating, adding lighting or noise etc. By including 

these changes during training, the patch would be much more robust towards similar changes, 

improving its transferability to real-world settings. Additionally, this preempts defensive 

methods that neutralize attacks by introducing transformations like resizing or rotation. 

3. TV (Total Variation) Loss of the patch: TV Loss is the difference between neighbouring 

pixels. It increases the smoothness of the patch and makes it less pixelated. This also takes into 

account certain defence methods that identify perturbations by extracting the image in terms of 

frequency. Many adversarial patches have high frequencies, and can be mitigated by extracting 

and omitting high-frequency regions of the image.   
 

The below equation shows the loss calculation.  

 
where the coefficients of each hyperparameter were fine-tuned to ⍺1 = 1, ⍺2 = 0.3, ⍺3 = 0.01  

 

2.5 Models 
We used two separate models for training and testing of the adversarial patch to investigate the 

robustness of the patch across different models. For training, we used ResNet508 with its built-

 
7 https://github.com/Liuhong99/Sophia  
8 https://github.com/deepinsight/insightface  

https://github.com/Liuhong99/Sophia
https://github.com/deepinsight/insightface


 

 

in weights. For testing, we used PyTorch’s FaceNet9 [10]. This is to promote robustness of our 

universal patch such that our attack is generally successful even across models, which mimics 

real-world black-box scenarios where different FR systems use different models, and the 

attacker is unable to predict which one will be used.  

 

3. Results and Discussion 

 

3.1 Preliminaries  
3.1.1 Patch Design Parameters 

For single patches, the patch size was determined to be 30 by 30 pixels. From Fig. A in the 

Appendix, a 30-by-30 patch is the most likely to balance between effectiveness and practicality. 

For multiple patches, we used a 10-by-10 patch, though it is more versatile in that using this 

method, the number of patches and size can be otherwise specified for any particular context.  

 

3.1.2 Testing 

Our success criteria was MSE loss between feature vectors of the patched image and the target 

image. We tested the patches both digitally and physically for the 2D-optimised patches, and 

physically only for 3D. In physical testing, the printed patches were of size 3cm by 3cm, 

deemed most appropriate when transferring digitally to physically, based on average facial 

length. Following that, for multiple patches, the patches were of size 1cm by 1cm.   

 

Generally, our patch is effective in causing the model to misclassify the attacker as the target 

person Taylor Swift. We considered a threshold of 0.95 for the MSE loss between the outputs 

for the perturbed image and Taylor Swift’s image, determined from the average MSE loss 

between images of Taylor Swift and the target  – which was approximately 0.9. A loss lower 

than the threshold is a successful misclassification.  
 

3.2 Optimisation Process  
During earlier optimisation, the patches were trained using only MSE loss between feature 

vectors of patched image and target image. One salient detail was that much more semantically 

meaningful patches were obtained, for example that of eyes, noses, or a partial face, versus 

after other losses were added (See Appendix). A possible reason is that the simpler optimisation 

pipeline directly focused on minimizing differences in feature vectors, which might have led 

to patches exploiting the most distinguishable facial features. These early patches may have 

aligned with high-salience regions due to their role in FR models, such as eyes and noses, 

which are heavily weighted in the embeddings generated. 

 

However, with the addition of more sophisticated loss components like EOT Loss, the 

optimisation gained additional constraints to ensure robustness, universality, and physical 

realism. These constraints could diffuse the optimisation focus across multiple objectives, 

leading to patches that prioritize generalizability and robustness over semantic specificity. 

Though this may render the patch less effective, it is nonetheless an important trade-off, when 

taking into account real-world constraints like conspicuousness. For example, materials like 

paper or fabric cannot perfectly reproduce fine-grained pixel-level details. TV Loss helps 

generate smoother patches that are easier to replicate on real-world objects while preserving 

effectiveness. Besides, patches with sharp edges tend to contain high-frequency signals. When 

captured by a camera or processed, these signals can be distorted, smoothed out, or discarded 

[11] which can make the patch less effective or detectable as an anomaly.  
 

 
9 https://github.com/timesler/facenet-pytorch  

https://github.com/timesler/facenet-pytorch


 

 

3.3 Evaluation of Different Strategies for Adversarial Patch  
3.3.1 Heatmap and Simulated Annealing  

From the simulated annealing process, the best vector obtained, relative to the nose coordinates 

in a 112-pixel by 112-pixel image was (12, 1). To most front-facing faces, this corresponded 

to a region between the nose and mouth, slightly towards the individual’s left cheek. As for 

multiple patches, the best vectors with the same reference point were (-18, 17), (18, 6) and (-3, 

27). This corresponded also to regions near the nose and mouth.   
 

Overall, we found that simulated annealing, with a success rate increase of ~34%, is more 

effective in finding an effective location, while that of the heatmap was ~32% (See also, 

Appendix, Fig. H). Our results corroborated with our hypothesis that simulated annealing 

would be the most effective compared to occlusion sensitivity; while both methods should work 

better than placing the patch on a random non-relative coordinate.  
 

This is likely because the heatmap generation was done in relation to the target image’s face, 

whereas the simulated annealing process was in relation to many faces. One obvious issue is 

that, though not without basis, it may be spurious to assume that particular feature which is the 

most salient to Taylor Swift (the nose, in this case) would be the optimal location to place the 

patch universally. At most, if solely based on the heatmap, the nose can be concluded to be the 

“optimal” location solely because it is the only possible drawn conclusion – all other options 

are illogical, because if the target image’s nose is her most salient feature, then naturally the 

universal patch ought to be placed on the nose. In essence, this result cannot be assumed to 

generalize universally. On the other hand, simulated annealing outputs the most apparent 

location through global search across varying facial proportions and features, which returns the 

most direct and apparent optimal, universal location.   
 

 

3.3.2 2D Patches, 3D Differentiable Rendering and TPS Transformation  

When tested in practice, despite an overall decrease in loss with reference to the clean data, 

most were unable to meet the threshold for a misclassification. This could be due to the camera 

capturing process — the pixels may also have been picked up differently when captured. 

Cameras process images using algorithms that may apply compression, sharpening, or noise 

reduction, all of which can subtly change the pixel values. This is as opposed to the optimisation 

process, where the patch was in a simulated environment with pixel values precisely defined 

and consistent. During the conversion from HEIC format to JPEG, and subsequent resizing, 

slight distortions or artifacts were introduced, further altering the pixel-level representation of 

the patch (See Appendix, Fig. M).Other factors like color aberrations in printing can also cause 

deviations from the original digital patch. Additionally, during training, the patch was placed 

with reference to a 112-by-112 image. The patch may have been optimised only relative to 

such a pixel space – for example, a specific value difference between a specific pixel bordering 

the patch and face. In practice, however, faces don’t have “resolutions”. Thus, when the patch 

is applied to faces outside the 112-by-112 resolution context, the relative spatial relationships 

and pixel-level interactions assumed during training may no longer hold. This is all while the 

actual printed patch remains 30-by-30 pixels.  

 

Contrary to our expectations, the 3D-optimised patches did not perform significantly better 

than the 2D patches. Because paper is non-elastic, it does not conform entirely to the contours 

of a person’s face, as was assumed during differentiable rendering – folds, wrinkles, or air gaps 

when applied to the face were not accounted for. In fact, when the patch was placed, because 

of its stiffness, it did not bend much at all.  

 
 

3.3.3 Single Patch and Multiple Patches 



 

 

Unsurprisingly, performance was generally poorer for multiple patches. This is likely because 

the size of each patch in multiple patches is much smaller, the total area covered is also much 

smaller, as it is only 3 patches of 10 by 10 pixels compared to 30-by-30. Every pixel can be 

thought of as an “attack”, and with smaller patches (in terms of pixel size), it means that there 

is less “attack potential”. Additionally, the possible combinations of pixels decrease 

exponentially, leaving less area for exploration. This effect may further be exacerbated by the 

use of TV loss to ensure smoothness. As for the testing on real faces, especially with the 

resizing and conversion, the patch texture, especially for one which is much smaller, is likely 

to have been severely distorted.  

 

4. Mitigation and Defence 

 
In defence against such adversarial attacks, we trained a Convolutional Neural Network (CNN) 

that could differentiate between the target person’s face (i.e. Taylor Swift), non-targets’ faces 

and faces containing adversarial patches. This was achieved through freezing the base VGG16 

model and creating a custom top layer for the specific classification of the target person’s face. 

Then, the model was trained with a dataset of faces containing randomly generated adversarial 

patches, a dataset of other random faces, and a dataset of Taylor Swift’s face only, assigned 

classes 0, 1 and 2 respectively.  Random cropping and random rotations were used to enhance 

the CNN's generalisation [12] helping the model focus on invariant features rather than overfit 

to specific individual pixels in the dataset. Augmented data also reduced the effectiveness of 

attacks including EOT loss by exposing the model to similar perturbations during training, 

helping the model improve its ability to recognise and classify adversarial inputs. 

 

We also used the Fast Fourier Transform (FFT). Adversarial patches generated often have high 

frequencies10 [13] as patch generation processes rely on some form of iterative noising in the 

patch region [14], resulting in differences between frequency domains of the patched region 

and the rest of the image. We extracted the frequencies of the image using FFT, covered high-

frequency regions, and reconstructed the modified image. The threshold for the low-frequency 

region (0.4) was determined by a histogram (see Appendix)  

 
Fig. 4.1 Detection and removal of high frequency 

patch from the perturbed image 

of extracted image frequencies. As the model has 

been trained with random cropping, it can make an 

accurate prediction about the person’s identity, 

even if some facial features are covered. While 

FFT has been explored in literature [14], it has 

rarely been applied to FR systems. 

 

4.1 Effectiveness of Mitigation and Defence Strategies on the Patch  
In this section, clean accuracy refers to the percentage of images correctly categorized within 

the non-adversarial datasets, while attack success rate is the proportion of adversarial images 

misclassified as Taylor Swift. The adversarial class consists of images generated as described 

in previous sections (see Fig. O.1-O.8, Appendix for results). 

For single patches, the combination of data augmentation and FFT proves most effective, as 

anticipated. This is due to the model's ability to discard most patches and generalize invariant 

features. However, for multiple patches, the best performance is achieved with either no 

augmentation or FFT alone. This suggests the model may have overfitted to augmented data 

 
10 Higher image frequencies are at the parts of images that are rapidly changing, such as sharp edges – or in this 

case, the adversarial patch.  



 

 

patterns and struggled with new augmentations. Additionally, as the model was trained 

primarily on larger patches (30x30), it may have been more sensitive to global pattern changes, 

failing to detect adversarial attacks when only local patterns were altered. The use of multiple 

patches exploited this vulnerability. 

Although the model performs well, it requires significant training time (>1 hour) and the 

assembly of large datasets (at least 300 images of the target). However, its ease of use 

compensates for these drawbacks, as users only need to add a layer to a pretrained model and 

apply FFT to process the input. 

4.2 Potential Strategies to Counter Defensive Measures 
However, if we can take these defence strategies into account during the training process, we 

can train the adversarial patch to be robust against defence strategies. One salient feature of 

patches that are exploited in defence systems is its high frequency. Therefore, it is worthwhile 

to explore methods which result in a low-frequency patch that is indistinguishable from the rest 

of the image in this front. This is precisely the reason that TV Loss was used, for it can reduce 

the high frequencies of the adversarial patches generated, thereby allowing the patch to go 

undetected by defence systems.  

 
Fig. 4.2.1 Frequency components of a randomly generated patch 

 

 
Fig. 4.2.2 patch during 

optimisation 

 

Integrating FFT can further smoothen the patch. We do this by optimising the low-frequency 

components of a randomly generated patch as usual (Fig. 4.2.1). To retain the low frequency, 

the low-frequency components were again extracted and further optimised after 20 iterations. 

(Fig. 4.2.2) When input into the model we trained, it was unable to detect the semi-optimised 

patch and was thus unable to enact any further defence strategies (see Fig. M, Appendix).  

 

5. Conclusion and Discussion 
 

In conclusion, we presented a novel method to generate universal adversarial patches against 

FR systems, leveraging on simulated annealing, 3D differentiable rendering and thin plate 

spline transformation to ensure universality and effectiveness even when transferred to real-

world settings. Results show the effectiveness of the patches produced.  

 

We also evaluated various defence strategies against our patches. Though the defence strategies 

showed high effectiveness in preventing the adversarial patches from working, when these 

defence strategies were taken into account during the training process, the adversarial patch 

was still able to bypass the defence methods and fool the FR system. Defence and attack 

systems often pose a “chicken-and-egg” problem – if adversarial attacks are successful in 

bypassing defence systems, researchers must develop even more robust defences that take into 

account such attacks. However, attackers, in turn, are constantly innovating, creating a 

continuous cycle of escalation. Researchers are often one step behind, as they cannot predict 

the next attack strategy with certainty. 



 

 

In a real-world context, this highlights the critical need for highly robust and adaptable defence 

systems capable of withstanding both known and unforeseen adversarial techniques. Defence 

strategies must not only address current vulnerabilities but also anticipate potential avenues for 

attack. This calls for the development of methods that generalize well across a wide range of 

adversarial scenarios, including those yet to be conceived.   

5.1 Potential Future Work 
First, accounting for material properties during 3D differentiable rendering—such as how 

paper might fold – could improve real-world  transferability.  

Second, our approach to multiple patches could be expanded, particularly in exploring patch 

interaction – sizes, locations, and combinations. Research could investigate whether smaller, 

distributed patches provide equivalent or superior effectiveness compared to a single larger 

patch by disrupting recognition across multiple feature points. Additionally, overlapping 

patches or patterns of placement, such as symmetric positioning, could introduce unique 

vulnerabilities in FR algorithms. Another avenue could be optimising the interaction between 

patches under physical constraints, such as occlusion or distortion when patches overlap or are 

viewed from different angles. Using multiple patches can also potentially address the issue of 

conspicuousness.  

Finally, low-frequency patch attacks remain an avenue for future work. Integrating more 

sophisticated frequency domain extraction methods, like multi-scale frequency analysis during 

training, and introducing other parameters to ensure robustness. Incorporating techniques like 

Gaussian splatting could produce more robust and inconspicuous patches.  
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Appendix 

 
Graph of Loss Against Length of Patch/ pixels 



 

 

 
Fig. A 

 
Example Patches During Optimisation 

MSE Loss Only: 

 
Fig. B.1 

 
Fig. B.2 

 
Fig. B.3 

Fig. B 

Multi-parameter Loss: 

 
Fig. C.1 

 

Fig. C.2 

 
Fig. C.3 

Fig. C 

 
 

Image Frequency Histogram  



 

 

 
Fig. D 

 
 

Patches After Optimisation 
Single Patches: 

 Random Coordinates Nose Coordinates Simulated Annealing 

Coordinates  

2D 

   

3D 

   

Thin Plate Spline  

  

Fig. E 

 



 

 

Multiple Patches: 

Patch 1  

Vector (-18, 17) from nose  

Patch 2 

Vector (18, 6) from nose   

Patch 3  

Vector (-3, 27) from nose 

   

Fig. F 

 
 

Reference: Test on Raw Dataset – Unpatched 

 

Average loss:  1.1684080978827861  

Percentage misclassified (%): 40.27932960893855  

Fig. G 

 
 

Test on Testing Dataset – Patched (2D)  
Single Patches: 

 Random Coordinates Nose Coordinates Simulated Annealing 

Coordinates  

2D Average loss:  

0.9057503263285752 
 

Percentage 

misclassified (%): 

64.03390483529185 

Average loss:  

0.8728682492147221 

 

Percentage 

misclassified (%):  

72.52937776921596 

Average loss: 

0.8801842340562321 

 

Percentage 

misclassified (%): 

74.77981121171257  

Fig. H 

 

Multiple Patches:  
Average loss (%): 0.9130112315919031  
Percentage misclassified: 62.646888846079754  

Fig. I 

 

 
 

Reference: Test on Real Faces – Unpatched 

 

Average loss: 1.2843632551339955 

Percentage misclassified (%): 15.384615384615385 



 

 

Fig. J 

 

 
 

Test on Real Faces – Patched 
Single Patches: 

 Random Coordinates Nose Coordinates Simulated Annealing 

Coordinates  

2D Average loss:  

1.1468529471984277 

 

Percentage 

misclassified (%):   

15.38461538461585 

Average loss: 

1.1058614758344798 

 

Percentage 

misclassified (%):  

15.384615384615385 

Average loss: 

1.0090523270460277 

 

Percentage 

misclassified (%):  

38.46153846153847 

3D Average loss:  

1.199671376835216 

 

Percentage 

misclassified (%): 

0.0 

Average loss:  

1.0610311123041005 

 

Percentage 

misclassified (%):  

7.6923076923076925  

Average loss: 

1.0487112402915955 

 

Percentage 

misclassified (%):  

23.076923076923077  

Thin Plate Spline  Average loss:  

1.1430250497964711 

 

Percentage 

misclassified (%):   

7.6923076923076925 

Average loss: 

1.0380303722161512 

 

Percentage 

misclassified (%):  

38.46153846153847 

Fig. K 

 

Multiple Patches: 

Average loss: 1.1402382117051344 

Percentage misclassified: 15.384615384615385 

Fig. L 

 

 
 

Physical Patch vs Digital Patch 

 

Physical  Digital  



 

 

  

Fig. M 
 

 
 

Patch Detection Using Frequency, With Low-Frequency Attack 

 

 
Fig. N 

 
 

Results of Evaluation of Defence Model 

Singular Patch 

Simulated Annealing 2D 

 Clean Accuracy/ % Attack Success Rate/% 

No Augmentation, No FFT 92.50 2.02 

With Augmentation 93.50 0.00 

With FFT 92.50 3.03 

With Augmentation, With FFT 94.00 2.02 

Fig. O.1 

 

Simulated Annealing 3D 



 

 

 

 Clean Accuracy/ % Attack Success Rate/% 

No Augmentation, No FFT 92.50 3.03 

With Augmentation 92.50 1.01 

With FFT 92.50 3.03 

With Augmentation, With FFT 91.50 2.02 

Fig. O.2 

 

Nose Coordinates 2D 

 

 Clean Accuracy/ % Attack Success Rate/% 

No Augmentation, No FFT 92.50 5.05 

With Augmentation 92.50 3.03 

With FFT 92.50 5.05 

With Augmentation, With FFT 92.50 3.03 

Fig. O.3 

 

Nose Coordinates 3D 

 

 Clean Accuracy/ % Attack Success Rate/% 

No Augmentation, No FFT 92.50 3.03 

With Augmentation 93.00 4.04 

With FFT 92.50 3.03 

With Augmentation, With FFT 93.00 4.04 

Fig. O.4 

 

Random Coordinates 2D 

 

 Clean Accuracy/ % Attack Success Rate/% 

No Augmentation, No FFT 92.50 2.00 

With Augmentation 92.00 4.00 

With FFT 92.50 2.00 

With Augmentation, With FFT 92.50 5.00 



 

 

Fig. O.5 

 

Random Coordinates 3D 

 

 Clean Accuracy/ % Attack Success Rate/% 

No Augmentation, No FFT 92.50 5.00 

With Augmentation 93.00 7.00 

With FFT 92.50 5.00 

With Augmentation, With FFT 92.50 3.00 

Fig. O.6 

 

TPS Nose  

 

 Clean Accuracy/ % Attack Success Rate/% 

No Augmentation, No FFT 92.50 2.02 

With Augmentation 94.00 2.02 

With FFT 92.50 2.02 

With Augmentation, With FFT 92.00 1.01 

Fig. O.7 

 

In General  

 Clean Accuracy/ % Attack Success Rate/% 

No Augmentation, No FFT 92.50 3.16 

With Augmentation 92.93 3.01 

With FFT 92.50 3.31 

With Augmentation, With FFT 92.57 2.87 

Fig. O.8 

 

Multiple Patches 

 Clean Accuracy/ % Attack Success Rate/% 

No Augmentation, No FFT 92.50 11.11 

With Augmentation 92.00 15.15 

With FFT 92.50 11.11 



 

 

With Augmentation, With FFT 93.50 17.17 

Fig. O.9 
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